Самоучитель по Matlab

Решение задач динамики

Циклическая нагрузка будет приводить к гармонической реакции механических систем. Гармонический анализ используется для нахождения установившейся реакции линейных систем, нагруженных синусоидальными силами. Расчет выполняется нахождением реакции системы на нескольких частотах и строится график амплитудно-частотной характеристики. Максимум реакции, найденный по графику будет соответствовать и максимуму напряжения в конструкции. Гармонический анализ предназначен для отыскания максимального значения уровней установившейся вибрации. Переходные процессы не оцениваются в этом виде анализа.
Гармонический анализ является линейным анализом. Некоторые нелинейности, такие как пластичность, контактные явления, или зазоры будут игнорироваться, даже если они определены в системе. Гармонический анализ может применяться в преднапряженных конструкциях, таких как скрипичная струна (при предположении, что напряжение от гармонической нагрузки существенно меньше, чем от предварительного напряжения).   

Гармонический анализ
Рассмотрены теоретические основы метода суперпозиции мод (в отечественной литературе он называется методом разложения по собственным формам). Кратко рассмотрены вопросы случайных колебаний. Кратко рассмотрены вопросы однофакторного и многофакторного анализа, а так же вопросы взаимной корреляции спектральных плотностей

Ландшафт области управления данными. Аналитический обзор
Программные средства управления данными составляют важнейшую часть системного программного обеспечения. Сегодня, как и в прошлые годы, наиболее распространенной категорией средств управления данными являются системы управления базами данных (СУБД). Однако все чаще возникает потребность в программных средствах, характеристики которых существенно отличаются от характеристик традиционных СУБД, и которые применяются в приложениях, где универсальные SQL-ориентированные СУБД слишком тяжеловесны и/или недостаточно функциональны и эффективны.

Новые возможности основных коммерческих SQL-ориентированных СУБД
Принципы распараллеливания запросов на симметричных мультипроцессорах во всех трех системах близки, но отчетливее всего проявляются у Oracle. С каждым процессором жестко связывается один поток управления. Отдельный процессор ведает планированием выполнения запросов и управлением буферной основной памятью. При обнаружении части плана запроса, для которого необходимые данные уже находятся в буферной основной памяти, эта часть запроса привязывается к свободному потоку управления и обрабатывается на соответствующем процессоре.

Российская SQL-ориентированная СУБД Линтер
СУБД Линтер является единственной существующей в настоящее время коммерческой российской СУБД. Она разработана и развивается компанией Релэкс, г. Воронеж. Конечно, по набору поддерживаемых возможностей, по производительности при работе со сверхбольшими базами данных, по объему своего внедрения эта система значительно уступает SQL-ориентированным СУБД

Объектно-ориентированные базы данных
К объектно-ориентированным (ОО) СУБД проявлялся повышенный интерес в 1990-е гг. В начале 21-го века казалось, что их время прошло. Однако к концу первого десятилетия появились признаки активизации этой области.

Новые технологии для обработки потоковых и сенсорных данных
Для некоторых прикладных областей традиционная технология управления данными, основывающаяся на двух- или трехзвенной системной архитектуре с выделенным сервером баз данных, размещении данных в медленной дисковой памяти и т.д., оказывается неприемлемой. К таким областям относятся, в частности, приложения потоковых и сенсорных данных.

Математическое моделирование процессов резания
Я немного подумал и ответил: «Несомненно. Это такие специальные кривые. Дай-ка, я покажу тебе. - Я взял свое лекало и начал его медленно поворачивать. - Лекало сделано так, что, независимо от того, как ты его повернешь, касательная в нижней точке горизонтальна».

Введение в систему Mathmatica 3.0
Всякий раз, используя систему Mathematica, Вы обращаетесь к самой большой в мире коллекции вычислительных алгоритмов. Mathematica автоматически выбирает соответствующие алгоритмы для каждого вычисления

Основы визуальной алгоритмизации
Эти этапы ориентированы для получения решения не отдельно взятой, конкретной задачи, а некоторого класса задач данного типа. Этап построения алгоритмов , реализующих выбранные методы решения задачи, детализирует и визуализирует процесс ее решения. Алгоритмизация позволяет уже на этом этапе оценить эффективность решения, уточнить методы решения для различных потоков входных данных и выявить некоторые ошибки.

Математическое моделирование
Математическое моделирование является эффективным (а в ряде случаев - и единственно возможным) средством исследования поведения сложных систем различной природы. В инженерной практике весьма часто встречаются случаи, когда процессы, происходящие в той или иной системе, могут быть представлены моделями порождения, обработки и преобразования тех или иных информационных, энергетических и материальных потоков. Системы данного класса получили название систем массового обслуживания (СМО).

Решение прикладных задач на компьютере

Самоучитель по Matlab

В наши дни компьютерная математика получила должную известность и интенсивно развивается как передовое научное направление на стыке математики и информатики. Это нашло отражение в крупной монографии и в целом ряде книг и обзоров автора данной книги, начавшего осваивать это направление еще в начале 80-х гг. прошлого века.
Программируемые микрокалькуляторы и персональные компьютеры уже давно применяются для математических расчетов. Для подготовки программ использовались различные универсальные языки программирования. В начале 90-х гг. на смену им пришли специализированные системы компьютерной математики (СКМ).
Среди них наибольшую известность получили системы Eureka, Mercury, Mathcad, Derive, Mathematica 2/3/4, Maple V R3/R4/R5 и Maple 6 и др. Каждая из этих систем имеет свои достоинства и недостатки и заслуживает отдельного рассмотрения. Повышенный интерес наших пользователей к подобным системам подтверждают результаты выпуска в последние годы целого ряда книг на русском языке, посвященных указанной теме. В списке литературы данной книги даны лишь основные из этих публикаций. За рубежом по каждой серьезной СКМ на web-сайтах их разработчиков можно найти перечни, включающие сотни наименований книг.
В данной книге рассматривается система MATLAB®, прошедшая многолетний путь развития от узко специализированного матричного программного модуля, используемого только на больших ЭВМ, до универсальной интегрированной СКМ, ориентированной на массовые персональные компьютеры класса IBM PC и Macintosh и рабочие станции UNIX и имеющей мощные средства диалога, графики и комплексной визуализации

Введение
MATLAB представляет собой хорошо апробированную и надежную СКМ, рассчитанную на решение самого широкого круга математических задач с представлением данных в универсальной (но не навязываемой пользователям) матричной форме, предложенной фирмой Math Works, Inc.

Визуализация и графические средства
В последнее время создатели математических систем уделяют огромное внимание визуализации решения математических задач. Говоря проще, это означает, что постановка и описание решаемой задачи и результаты решения должны быть предельно понятными не только тем, кто решает задачи, но и тем, кто в дальнейшем их изучает или просто просматривает. Большую роль в визуализации решения математических задач играет графическое представление результатов, причем как конечных, так и промежуточных.

Действительные и комплексные числа
Число -простейший объект языка MATLAB, представляющий количественные данные. Числа можно считать константами, имена которых совпадают с их значениями. Числа используются в общепринятом представлении о них. Они могут быть целыми, дробными, с фиксированной и плавающей точкой. Возможно представление чисел в хорошо известном научном формате с указанием мантиссы и порядка числа.

Основы форматирования двумерных графиков
Графики в системе MATLAB строятся обманчиво просто. Связано это с тем, что многие свойства графиков установлены по умолчанию. К таким свойствам относятся вывод или скрытие координатных осей, положение их центра, цвет линии графика, ее толщина и т. д. и т. п. Позже будет показано, как свойства и вид графиков можно менять в широких пределах с помощью параметров команд графики. Однако этот путь требует хорошего знания деталей языка программирования и дескрипторной графики системы MATLAB.

Анимация в пространстве — аттрактор Лоренца
Современная трехмерная графика — одна из причин большой популярности системы MATLAB. В этом разделе мы не будем рассматривать конкретные реализации тех или иных видов трехмерной графики. Вы можете самостоятельно вывести на экран дисплея текст (листинг) любого файла примеров трехмерной графики с помощью команды type. Ограничимся лишь тремя примерами визуализации сложных математических задач, когда используется оживление изображений

Вызов справки MATLAB
Последняя кнопка панели инструментов Help (Помощь) открывает окно с перечнем разделов справочной системы. Это окно было показано на 4.8. В уроке 4 мы подробно ознакомились с работой со справочной системой, так что на этом можно закончить описание средств системы MATLAB, доступ к которым обеспечивает панель инструментов.

Графики в полярной системе координат
В полярной системе координат любая точка представляется как конец радиус-вектора, исходящего из начала системы координат, имеющего длину RHO и угол ТНЕТА. Для построения графика функции RHO(THETA) используются приведенные ниже команды. Угол ТНЕТА обычно меняется от 0 до 2*pi. Для построения графиков функций в полярной системе координат используются команды типа polar



Пример применения объекта дескрипторной графики
Объем и направленность данной книги не позволяют подробно описать все многообразие возможностей дескрипторной графики. Ограничимся пока одним примером. Пусть надо построить линию,-проходящую через три точки с координатами (0,1), (2,4) и (5,-1). Для этого воспользуемся объектом line, который порождается одноименной графической функцией

Элементарные функции
Элементарные функции, пожалуй, наиболее известный класс математических функций. Поэтому, не останавливаясь подробно на их описании, представим набор данных функций, имеющийся в составе системы MATLAB. Функции, перечисленные ниже, сгруппированы по функциональному назначению. В тригонометрических функциях углы измеряются в радианах. Все функции могут использоваться в конструкции вида y=func(x), где func — имя функции. Обычно в такой форме задается информация о функции в системе MATLAB.

Функции Эйри
Функция Эйри формирует пару линейно независимых решений линейного дифференциального уравнения

Перестановки элементов матриц
Если А — матрица, cumprod(A) возвращает матрицу того же размера, что и А, содержащую произведения с накоплением для каждого столбца матрицы А (Первая строка без изменений, во второй строке произведение первых двух элементов каждого столбца, в третьей строке элементы второй строки матрицы-результата умножаются на элементы третьей строки матрицы входного аргумента по столбцам и т. д.);

Обращение матриц — функции inv, pinv
На практике вычисление явной обратной матрицы не так уж необходимо. Чаще операцию обращения применяют при решении системы линейных уравнений вида Ах=b. Один из путей решения этой системы — вычисление x=inv(A)*b. Но лучшим с точки зрения минимизации времени расчета и повышения точности вычислений является использование оператора матричного деления х=А\b. Эта операция использует метод исключения Гаусса без явного формирования обратной матрицы.

И сингулярных чисел разреженных матриц
Применение функции eigs решает проблему собственных значений, состоящую в нахождении нетривиальных решений системы уравнений, которая может быть интерпретирована как алгебраический эквивалент системы обыкновенных дифференциальных уравнений в явной форме Коши: A*v=l*v.[

Вычисление размера размерности массива
Для N-мерных массивов А при n2 size(A) возвращает N-мерный вектор-строку, отражающий страничную организацию массива, последняя составляющая этого вектора равна N. В векторе отсутствуют данные о единичных размерностях (тех, где расположены вектор-строка или вектор-столбец, т. е. size(A,DIM)==l). Исключение представляют N-мерные массивы Java массивов javaarray, которые возвращают размер массива самого высокого уровня.

Применение массивов структур
Массивы структур находят самое широкое применение. Например, они используются для представления цветных изображений. Известно, что цветные изображения формата RGB состоят из массивов интенсивности трех цветов - красного R, зеленого G и синего В. При этом каждый массив содержит данные о координатах точки (они определяются целочисленными индексами массива) и о ее яркости (число от 0 до 1 в формате чисел с плавающей запятой). Чтобы некоторое изображение, например pic, несло данные о цвете всех точек, придется представить изображение массивом структур с полями pic.r, pic.g и pic.b.

Вложенные массивы ячеек
Содержимым ячейки массива ячеек может быть, в свою очередь, произвольный массив ячеек. Таким образом, возможно создание вложенных массивов ячеек — пожалуй, самого сложного типа данных.

Метод минимизации обобщенной невязки
Функция gmres начинает итерации от начальной оценки, представляющей собой вектор размера и, состоящий из нулей. Итерации производятся либо до сходимости к решению, либо до появления ошибки, либо до достижения максимального числа итераций. Сходимость достигается, когда относительный остаток norm(B-A*X)/norm(B) меньше или равен заданной погрешности (по умолчанию 1е-6). Максимальное число итераций — минимум из n/restart и 10. Функция gmres (...) имеет и ряд других форм записи, аналогичных описанным для функции bieg(...)

Вычисление площади полигона
В системе MATLAB определены функции, вычисляющие площадь полигона и анализирующие нахождение точек внутри полигона. Для вычисления площади полигона используется функция polyarea: polyarea(X.Y) — возвращает площадь полигона, заданного вершинами, находящимися в векторах X и Y. Если X и Y — матрицы одного размера, то polyarea возвращает площадь полигонов, определенных столбцами X и Y;

Основные функции символьных данных
Первые 127 чисел — это коды ASCII, представляющие буквы латинского языка, цифры и спецзнаки. Они образуют основную таблицу кодов. Вторая таблица (коды от 128 до 255) является дополнительной и может использоваться для представления символов других языков, например русского. Длина вектора S соответствует числу символов в строке, включая пробелы. Апостроф внутри строки символов должен вводиться как два апострофа ' '.

Открытие и закрытие файлов
Файл обычно является некоторой совокупностью данных, объединенных одним именем. Тип файла, как правило, определяется его расширением. Мы рассматриваем файл как некое целое, хотя физически на диске он может быть представлен несколькими областями — говорят, что в этом случае файл фрагментирован.

Структура М-файла-функции
М-файл-функция является типичным объектом языка программирования системы MATLAB. Одновременно он является полноценным модулем с точки зрения структурного программирования, поскольку содержит входные и выходные параметры и использует аппарат локальных переменных

Построение диаграмм Парето
Команда profile plot использует для построения графическую команду pareto. Диаграмма Парето представляет собой столбцы, расположенные в порядке убывания отображаемых значений. С другими возможностями команды pareto можно ознакомиться, выполнив команду help pareto. pareto(Y,NAMES) — строит диаграмму Парето с пометкой столбцов значений вектора Y соответствующими именами, содержащимися в векторе NAMES;

Средства работы со звуком
Начиная с версии МАТЬАВ 5.0 в системе несколько расширены средства для работы со звуком. До этого система имела единственную звуковую команду:
sound(Y.Р5) — воспроизводит сигнал из вектора У с частотой дискретизации Р5 с помощью колонок, подключенных к звуковой карте компьютера. Компоненты У могут принимать значения в следующих пределах -1.0=у=1.0. Для воспроизведения стереозвука на допускающих это компьютерных платформах У должен быть матрицей размера

NAG Foundation Toolbox
Одна из самых мощных библиотек математических функций, созданная специальной группой The Numerical Algorithms Group, Ltd. Пакет содержит сотни новых функций. Названия функций и синтаксис их вызова заимствованы из известной библиотеки NAG Foundation Library. Вследствие этого опытные пользователи NAG ФОРТРАН могут без затруднений работать с пакетом NAG в MATLAB. Библиотека NAG Foundation предоставляет свои функции в виде объектных кодов и соответствующих m-файлов для их вызова. Пользователь может легко модифицировать эти МЕХ-файлы на уровне исходного кода.